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Red Tides in the Eastern Gulf of Mexico
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Abstract—In recent decades, the technology used to detect and
quantify harmful algal blooms (commonly known as red tides)
and characterize their physicochemical environment has improved
considerably. A remaining challenge is effective delivery of the
information generated from these advances in a user-friendly
way to a diverse group of stakeholders. Based on existing in-
frastructure, we establish a Web-based system for near-real-time
tracking of red tides caused by the toxic dinoflagellate Karenia
brevis, which annually threatens human and environmental health
in the eastern Gulf of Mexico. The system integrates different
data products through a custom-made Web interface. Specifically,
three types of data products are fused: 1) near-real-time ocean
color imagery tailored for red tide monitoring; 2) K. brevis cell
abundance determined by sample analysis; and 3) ocean currents
from a nested and validated numerical model. These products
are integrated and made available to users in Keyhole Markup
Language (KML) format, which can be navigated, interpreted,
and overlaid with other products in Google Earth. This integration
provides users with the current status of red tide occurrence (e.g.,
location, severity, and spatial extent) while presenting a simple way
to estimate bloom trajectory, thus delivering an effective method
for near-real-time tracking of red tides.

Index Terms—Cyberspace, data fusion, geographic information
sciences, Google Earth (GE), harmful algal blooms (HABs), pre-
diction, remote sensing.

I. INTRODUCTION
A. Need for Near-Real-Time Monitoring

N RECENT decades, the frequency, spatial extent, and eco-
nomic effects of harmful algal blooms (HABs), commonly
known as red tides, have increased worldwide [1]—-[3]. In the
eastern Gulf of Mexico, blooms of the toxic dinoflagellate
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Karenia brevis occur nearly annually, can extend over large
areas (hundreds of square kilometers), and can persist as long
as 23 months [4]. Blooms can result in fish kills and marine
mammal mortalities [S]—-[7], as well as human illnesses. Specif-
ically, humans can experience respiratory irritation from inhal-
ing aerosolized algal toxins or can contract Neurotoxic Shellfish
Poisoning from the consumption of contaminated shellfish [8],
[9]. The financial costs associated with such blooms in the fish-
ery, public health, recreation, and tourism sectors are estimated
to be $80 million per year [10]. Many of these costs are incurred
along Florida’s Gulf Coast. For example, during a moderate
red tide season (2002-2003), Florida aquaculture and oyster
industries lost an estimated $6 M as a result of shellfish bed
closures intended to protect public health [11].

Local and regional stakeholders require near-real-time in-
formation on blooms, such as those caused by K. brevis, to
mitigate their negative effects. In fact, the Gulf of Mexico
Alliance’s Governor’s Action Plan suggested that researchers
and managers “improve capabilities of Gulf-wide HAB moni-
toring networks to support HAB detection and tracking” [12].
With improved monitoring capabilities, coastal communities
can prepare for blooms by enacting preparedness networks,
coordinating messaging, and creating outreach documents. In
Florida, near-real-time bloom tracking information is used by
managers to direct event response activities (e.g., water sam-
pling), public health officials to minimize health impacts, local
visitor centers to reduce losses to the tourism industry, and the
public to plan recreational activities. Thus, the utilization of
tracking information before and during blooms enhances the
efficiency and cost-effectiveness of monitoring programs and
reduces the negative effects of HABs regionally. However, to
enable effective communication of essential HAB monitoring
data with a diverse group of stakeholders, data must be in-
tegrated and disseminated through simple, user-friendly, and
decision support tools.

B. Current Infrastructure for Monitoring and
Information Dissemination

1) Field Sampling: Since 1954, the Florida Fish and Wildlife
Conservation Commission (FWC)’s Fish and Wildlife Research
Institute has monitored marine and estuarine waters either rou-
tinely (i.e., weekly, twice-monthly, and monthly) or in response
to observations of discolored water, respiratory irritation, or
wildlife effects. A primary goal of this monitoring is to detect
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Fig. 1. Maps of west Florida showing sampling efforts and Karenia brevis cell abundance during representative (a) bloom (July to September 2014) and
(b) nonbloom (March to May 2014) periods. Current status maps are posted on the state’s website (MyFWC.com/RedTideStatus) weekly, and archived maps
are available in a Flickr gallery (flickr.com/photos/myfwc). Florida’s Big Bend region is outlined in red.

and quantify nuisance, harmful, and toxic blooms, includ-
ing those caused by K. brevis. A network of approximately
190 state and county agencies, private research institutions,
universities, and private volunteers work together to collect
water samples, which are returned to the Fish and Wildlife
Research Institute for analysis (for additional information on
the monitoring infrastructure in Florida see Heil and Steidinger
[13]). Based on historical bloom occurrences and trajectories
and due to resource limitations (i.e., available vessels and
funding), most sampling occurs in southwest Florida and is
typically biased toward nearshore surface waters. However, dur-
ing blooms, more extensive sampling occurs if state resources
are appropriated (Fig. 1). HAB taxa including K. brevis are
identified and enumerated from field-collected water samples
via microscopy. Results are distributed to collaborators daily
via individual reports and weekly to the public through a red
tide status report posted to the FWC’s website (MyFWC.com/
RedTideStatus), social media (www.Facebook.com/FLHABS),
and e-mail. Since 2013, the statewide red tide status page
has averaged approximately 10 000 hits per month, with the
greatest number of hits recorded during periods with blooms.
In addition, FWC’s weekly e-mail reports have been distributed
to more than 430 000 individuals, approximately 99% to the
public and less than 1% to other scientific organizations.

2) Satellite Remote Sensing: Satellite remote sensing is an
effective tool for detecting water discoloration resulting from
increases in K. brevis cell abundance (e.g., > 10* cells L")
and intracellular chlorophyll-a content (Chla, mg m~?) during
blooms of K. brevis. Moreover, bloom tracking is possible
because of the satellites’ synoptic and frequent measurements.
Steidinger and Haddad [14] first used Chla estimated from
the proof-of-concept ocean color satellite sensor Coastal Zone
Color Scanner (CZCS, 1978-1986) to observe a major K. brevis
bloom in 1979. Since then, several follow-on sensors have
made near-operational observations possible. These sensors
include the Sea-viewing Wide Field-of-view Sensor (SeaWiFS,

1997-2010), the Moderate Resolution Imaging Spectrora-
diometer (MODIS, 2000—present on Terra and 2002—present
on Aqua), and the Medium Resolution Imaging Spectrometer
(MERIS, 2002-2012). Typically, a two-step approach is used
to detect and characterize blooms. The first step is detection.
Most detection algorithms are based on Chla or Chla anomaly
[15]-[18] or on solar-stimulated fluorescence using the MODIS
fluorescence line height (FLH) data product [19], [20] or
its alternative [21]. The MODIS nFLH (FLH normalized to
solar irradiance) provides a better measure of phytoplankton
abundance [22] than satellite-derived Chla because the latter is
based on blue-green reflectance ratios, which are sensitive to
perturbations by colored dissolved organic matter (CDOM, a
water constituent often found in coastal waters due to terrestrial
runoff). Although nFLH is sensitive to perturbations by resus-
pended sediments [23], visual inspection of the enhanced red-
green-blue (ERGB) image can differentiate sediment-rich from
sediment-poor waters [20]. The MODIS standard data products
are currently being generated and distributed through a Virtual
Antenna System (VAS) daily in near real time by the Optical
Oceanography Laboratory of the University of South Florida
[24]. Through a Web interface, a user can search and browse a
calendar for images of interest [Fig. 2(a)].

Once a bloom is detected by either the Chla or other MODIS
products, the spectral shape in the blue-green wavelengths [25]
or the backscattering efficiency [18], [26] is checked to deter-
mine whether the bloom is due to K. brevis or other nontoxic
phytoplankton. Each method has its own advantages and disad-
vantages under different conditions, and recent evaluations sug-
gested that the performance of these approaches is comparable
[25], [27].

At present, federal and state agencies in the U.S. opera-
tionally use two of the aforementioned approaches to mon-
itor K. brevis blooms in the Gulf of Mexico. Specifically,
the National Oceanographic and Atmospheric Administra-
tion (NOAA) HAB Operational Forecast System combines
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Fig. 2. (a) Examples of the VAS-produced satellite data products at op-
tics.marine.usf.edu. The screenshot shows the various images captured by
several satellite sensors on July 30, 2014, over Florida’s Big Bend region.
(b) For HAB monitoring, the eastern GOM is divided into several subregions
to facilitate visualizing the medium-resolution (250 m—1 km) images.

monitoring data collected by the FWC and other partners,
meteorological and oceanographic data, and the Chla-anomaly
and spectral curvature [16], [25] to forecast bloom movement
and respiratory irritation for coastal regions of Florida and
Texas. These forecasts are used to create bulletins (tidesandcur-
rents.noaa.gov/hab/) for general and scientific audiences. The
FWC uses the MODIS nFLH data product [19] to inform sam-
pling and produce integrative data products, including status
maps (MyFWC.com/RedTideStatus), for its end users.

3) Numerical Models: The west Florida continental shelf
(WES) is located in eastern Gulf of Mexico and has a broad
gentle slope. Circulation of the WES is controlled by local (e.g.,
tides, river inputs, winds, and surface net heat fluxes) and re-
mote (i.e., loop current) forcing, as well as interactions between
the loop current, shelf, and estuaries [28], [29]. Numerical mod-
eling of WFS dynamics requires inclusion of these different re-
gions (i.e., deep gulf, shelf, and estuaries) and a high-resolution
framework to resolve the narrow inlets connecting the estuaries
and their adjacent coastal water regions. The West Florida
Coastal Ocean Model (WFCOM) accounts for both local and
deep-ocean forcing by nesting the Finite Volume Coastal Ocean
Model (FVCOM, [30]) into the Hybrid Coordinate Ocean
Model (HYCOM, [31]) and adding eight principal tidal con-
stituents along the open boundary. A detailed description of
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Fig. 3. Domain for the WFCOM nowcast-forecast model (surface velocity and
salinity shown). Resolution for each is degraded for plotting purposes. Near-
real-time and historical products are available at http://ocgweb.marine.usf.edu.

the WFCOM construct, including a quantitative gauging of the
model simulation performance against in sifu observations for
calendar year 2007, is provided by Zheng and Weisberg [29].
Currently, the surface wind and heat fluxes are interpolated
from the NOAA’s National Centers for Environmental Pre-
diction Weather Research and Forecasting (WRF) NAM data
(http://nomads.ncep.noaa.gov:9090/dods/nam/). The freshwa-
ter data are collected from the United States Geological Survey
(USGS, waterdata.usgs.gov) to drive the model by either point
or line sources, depending on the grid size and the width of
rivers. Satellite-derived sea surface temperature (SST) is used
to relax the modeled SST to correct the surface net heat fluxes.
Model performance is quantified through the use of Tampa
Bay Physical Oceanographic Real-Time System measurements
(PORTS), sea level data collected at NOAA tidal gauges, and
from West Florida Shelf velocity and other data collected from
the University of South Florida’s Coastal Ocean Monitoring
and Prediction System (COMPS) buoys.

WFCOM was recently modified to extend to the west of the
Mississippi River Delta (Fig. 3), to nest into the Gulf of Mexico
HYCOM, and to include actual river inflows [32]. The model
has a spatial resolution tapering to 150 m within the inlets,
thus resolving the connections across the Florida Keys to the
Florida Current and the interactions between the continental
shelf and the estuaries. WFCOM is run daily with automated
products (one day hindcast, one day nowcast, plus two and half
day forecast) available at http://ocgweb.marine.usf.edu.

4) Objective: Integration, User-Friendly Information Deliv-
ery: Although field measurements, satellite remote sensing,
and numerical modeling each individually generate specific
data products relevant to HAB monitoring, these products
are distributed in different formats from different sources and
alone cannot individually provide a complete picture of bloom
status or dynamics. For example, it is difficult to differentiate
water masses from a single satellite image; field data provide
validation of imagery. Furthermore, without satellite imagery, it
is difficult to put K. brevis cell abundance data in context, even
when the data are displayed directly on a map, as the points
are often noncontiguous and few. An effective HAB monitoring
system therefore requires integration of products from multiple
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Fig. 4. Schematic flowchart showing various data layers and the steps to
integrate them into Google Earth. A sample result is shown in Fig. 5.

disciplines [33], [34]. Hence, the objective of this effort is to
integrate the aforementioned products through a common Web
portal to facilitate interactive visualization and analysis for both
researchers and the public in near real time.

II. INTEGRATION METHODS

Integration is a multistep process (Fig. 4), described in de-
tail in the following discussion. Google Earth (GE) provides
the platform used to integrate data. Using Keyhole Markup
Language (KML, an XML subset used to express visualization
and geographic annotation), a KML file provides GE the infor-
mation it needs to superimpose data products (Figs. 1 and 2),
thereby offering management a tool beyond the capabilities of
a normal Web browser. This integrated product is comprised of
three components: satellite imagery, K. brevis cell abundance
data, and current vector data.

Details on generation of satellite data products in near real
time through the VAS are described in Hu et al. [24]. Briefly,
low-level satellite data from MODIS and VIIRS are obtained
from the NASA Goddard Space Flight Center through subscrip-
tions to data from specific regions of interest (ROIs). The time-
based job scheduler (termed “cron”) is used to run programs
written in-house that regularly check each ROI subscription for
new satellite data. Once available, data are downloaded and
processed using both NASA standard algorithms (through the
software package SeaDAS) and other customized algorithms to
generate products in near real time (with a ~4-8 hour delay
from the satellite overpass). This job stream is managed by
S4P software [35] with additional in-house programs. Satellite
data are processed in near real time and then reprocessed four
days later using updated ancillary data. For the integrated HAB
product in the eastern GOM, six ROIs are defined [Fig. 2(b)].

FWC independently creates KML files that display map
layers of K. brevis cell abundance data in GE (e.g., Fig. 1). To
ensure that the most up-to-date information is made available,
cron jobs attempt to download new FWC KML files on a daily
basis. The KML files are typically created on each Friday,
covering the calendar week. After being downloaded, the FWC
KML files are renamed to be easily associated with a particular
week of a year. If new data are found, older data are overwritten.
While the K. brevis cell abundance data within these files are
displayed in the integrated product, the FWC KML files are
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Fig. 5. Example of the integrated data product for the Florida’s Big Bend
region after a mouse click on the GE icon (Fig. 4). For illustration purposes,
these are screenshots of mouse clicks on the various features. (a) Three types of
data (satellite image, K. brevis cell counts, and surface currents) are brought into
Google Earth through a simple mouse click. The background satellite image is
MODIS nFLH on July 30, 2014; the current vectors are hindcast products for
the same day; the cell count data are for that week. (b) Information on each cell
count location is displayed in detail through a mouse click. (c) Information on
surface currents (speed and direction) at each location (arrow) is also available
through a mouse click.

modified for easier visualization with the other data sources.
For example, the symbol sizes and colors are modified to
make the cell abundance data more apparent when overlain
on satellite images, and county boundaries are removed to
reduce file size in the final product. Within GE, each K. brevis
cell abundance record (“balloon”), when clicked, will display
specifics on sample collection (date, location, and depth) as
well as the numerical cell abundance [Fig. 5(b)].

On a daily basis, WFCOM makes forecast (2.5 days for-
ward), nowcast (today), and hindcast (yesterday) data available
on a webserver as ASCII files with four components: longitude,
latitude, and the u- and v-vectors of ocean currents in cm s,
As with the FWC data, a cron job retrieves these files daily
and begins processing the data into KML format. For each
model result (i.e., geographic location), the current vector is
transformed through trigonometric computations and written
into a KML document as a “placemark.” This “placemark”
defines an arrow as well as associated instructions (on arrow
size and position) for display in GE. Furthermore, when the
arrow is clicked in the GE, a description of the arrow’s starting
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location, the current speed, and the u- and v-components are
revealed [Fig. 5(c)]. The transformed current vector KML
document is stored in ZIP file format. As updated data become
available, previous nowcast data are overwritten with hindcast
data. Although WFCOM provides the best model results, lower
resolution HYCOM current vectors are also available. While
not included in the KML files created for the eastern GOM
regions, HYCOM data are queried, downloaded, and formatted
directly from the OpenDAP servers (https://hycom.org/) on a
daily basis. This ensures redundancy in the case that WFCOM
is delayed or unavailable, as the lower resolution HYCOM
model results can be used as alternatives for data integration.

Finally, the last step in establishing an effective data integrated
HAB monitoring system is to provide users a means to select im-
ages of interest and display them seamlessly in GE. As described
in Hu et al. [24], once an ROI is selected (under “Satellite Data
Products” on optics.marine.usf.edu), a program is called to write
xhtml code that provides the user interface and displays visual
thumbnails of the satellite data [Fig. 2(a)]. Several products are
created for each satellite pass over each ROI, including those as-
sociated with red tide bloom detection: Chla, nFLH (for MODIS
only), red-green-blue (RGB) composites, and enhanced RGB
(ERGB) composites. Located underneath each thumbnail is a GE
button that, when clicked, begins creation of a KML file in mem-
ory which is sent to the user (Fig. 4). This KML file contains the
geolocation information (latitude and longitude bounds) of the
specified satellite image, URL reference to the image file, URL
reference to a corresponding color legend, and region-specific
parameters for display in GE. Also integrated into this KML
file are the modified FWC KML file (as a network link) and the
corresponding current vector KML document.

Creating this integrated KML file on demand ensures that
the most accurate satellite imagery available is combined with
the most up-to-date K. brevis cell abundance data and current
vectors. Since all of these products are updated automatically,
the same GE button will thus produce a different integrated
KML file as new data become available. As such, users are
provided with a constantly updated tool with which to identify
and monitor red tides in the eastern Gulf of Mexico.

III. APPLICATIONS

The integrated system (Fig. 5) has been available online for
users to obtain red-tide-related information since 2012. Note
that the integrated product is brought to the user through one
single mouse click on a GE button [shown in Fig. 2(a)]. The inte-
grated map shows all three data layers: satellite image (in Fig. 5,
this is a MODIS nFLH image from July 30, 2014), K. brevis
cell abundance for the week encompassing the satellite image
overpass (note that the K. brevis KML files are updated every
Friday), and current vectors from WFCOM hindcast. Within
GE, a user can choose to turn on/off each of the three data
layers. Furthermore, a user can click on each cell count location
or current vector location (arrow) to display the detailed infor-
mation about the cell abundance data and the current speed and
direction, as shown in Fig. 5(b) and (c), respectively.

This system has been used by FWC, the state agency re-
sponsible for HAB monitoring and management in Florida, to
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Fig. 6. Example of an FWC red tide bulletin based on the integrated monitor-
ing system shown in Fig. 5(a). For clarity, the surface currents are removed, but
interpretation of the image content is annotated by a human analyst. This type
of bulletin is distributed routinely to various stakeholders.

trigger event response sampling, direct sampling efforts, and fill
major data gaps. Importantly, the MODIS nFLH data product
provides a spatial context for routine monitoring and event
response. Once the satellite-detected features are confirmed
with concurrent K. brevis abundance data, images can provide
specific dimensions of surface blooms and fill major data gaps,
particularly in offshore waters that are infrequently sampled.
The current vectors overlaid on the image provide visualization
on the potential transport of the surface bloom. This infor-
mation is interpreted by a red tide analyst, with narratives
annotated on the integrated map and subsequently disseminated
to a variety of stakeholders (Fig. 6).

An example on how the system has been used is given
in Hu er al. [36]. An offshore bloom near the Florida’s Big
Bend region (Fig. 1) was first captured in MODIS nFLH
imagery in late June 2014, which (in combination with reported
fish kills) triggered several targeted offshore surveys in July,
August, and September. The adaptive cruise surveys not only
collected bloom-relevant biophysical and optical data around
the bloom (e.g., Fig. 6) but also provided validation of the
MODIS observations and numerical circulation model. In turn,
such integrated information was updated routinely (and in near
real time whenever new data were available) and disseminated
by FWC to various stakeholders (through an e-mail listserv) for
decision making.

The examples shown in Figs. 5 and 6 are for illustration pur-
poses only. In practice, the integration is made with all available
image types (e.g., Chla, ERGB, and SST), user-specified date
ranges for cell abundance data, and across all ROIs shown in
Fig. 2(b). Once brought to GE, each image type can be turned
on/off by a user; thus, information from different images can be
visualized. To date, these products have provided an effective
means to monitor the coastal environment. According to Web
usage statistics, from 2013 to the present, GE products on
optics.marine.usf.edu (which include the integrated GE
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Fig. 7. (a) 3.5-day surface and (b) bottom trajectories of K. brevis generated by the WFCOM model. The initial concentrations were determined
from water samples collected on 08/06-08/2014. Data products for and other regions in the eastern GOM are available in near real time at

http://ocgweb.marine.usf.edu/hab_tracking/HAB_trajectories.html.

product) average approximately 28 000 hits and distribute over
8 GB of KML data on a monthly basis to users in academia,
government, and private sectors.

Although field observations, satellite remote sensing, and
numerical modeling individually provide critical information
on HAB monitoring, none of them delivers a complete picture
without others [13]. The Web-based integration of these compo-
nents into a user-friendly format represents a milestone in HAB
detection and tracking. In particular, the overlay of the surface
current vectors and the ability to “read” the current speed and
direction at any location provide a crude way to estimate the po-
tential movement of the identified HABs, representing a short-
term forecasting tool to trace surface movement of the HABs.

IV. DISCUSSION

Although the integrated system has not been evaluated com-
prehensively (by all stakeholders) or by rigorous statistics,
validation and accuracy assessment of the individual compo-
nents have been available in the literature. The bloom detection
by MODIS nFLH imagery has similar performance to other
methods [27], with an overall accuracy of about 80% for bloom
and nonbloom detections when bloom is defined as waters with
K. brevis cell abundance of > 50 000 cells L~!. Accuracy may
increase or decrease for individual events. For example, for the
bloom event between July and September 2014 off the Big
Bend region [36], the accuracy of differentiating bloom from
nonbloom waters is nearly 100%, although pixelwise compari-
son showed an accuracy of ~90%. In other cases, the accuracy
may be lower due to interferences of non-phytoplankton con-
stituents to the MODIS nFLH signals.

The fidelity of the numerical model in nowcasting and hind-
casting surface currents has also been evaluated [29], which
showed excellent agreement between modeled and observed
currents. For example, comparison between modeled and ob-
served surface current speeds over six buoy stations over the
west Florida shelf in 2010 (hourly data after 36-h low-pass
filtering to remove tidal oscillations) showed root-mean-square
uncertainties of 5 cm s™! (r = 0.52, N > 35000) for a range
of 0-45cm s,

While the field sampling component of this integrated system
is limited in spatial and temporal coverage due to lack of in-
frastructure and financial resources, the other two components
face several technical challenges. For satellite observations,
there is still room for algorithm improvement to increase the
detection accuracy, particularly in early bloom stages when cell
concentrations are relatively low and water discoloration is not
apparent (e.g., approaching 10000 cells L~!, the lower end of
the “low” concentration defined by FWC. In a pure K. brevis
population, this corresponds to about 0.1 mg m~* Chla). In
addition to the accuracy limitation, lack of observations due
to frequent cloudcover is currently a major obstacle for daily
distribution of satellite imagery in near real time. The use of
multiple sensors may reduce cloudcover, yet VIIRS lacks a
fluorescence band to detect blooms in CDOM-rich waters [36],
thus demanding better algorithms to detect blooms using other
visible and/or near-infrared bands.

Similarly, there are some limitations in the modeling com-
ponent that require further improvement. Because the nested
WFCOM relies on the GOM HYCOM to provide the open
boundary conditions, the accuracy of the former also depends
on the latter. An example is given in [29] when HYCOM did
not provide correct location of the loop current near the Dry
Tortugas in the second half of 2007, leading to large errors in
the WFCOM simulations. Furthermore, WFCOM nowcasts and
forecasts currently do not include precipitation/evaporation,
which might lead to errors in estuaries or nearshore waters.
Finally, the model relies heavily on wind, whose accuracy also
plays a critical role in driving the model.

With improvements in detection through refined remote sens-
ing algorithms and additional field observing techniques (e.g.,
gliders), we envision further development of the integrated
products through improving the forecasting capacity. For ex-
ample, currents in coastal oceans can change rapidly following
winds, tides, and deep-ocean circulations. As such, bloom
trajectories are better estimated by time-dependent currents,
rather than hindcasted vectors. Development of such bloom tra-
jectories has been implemented through the Collaboration for
Prediction of Red Tides (CPR), a partnership between FWC and
USF (Fig. 7). WFCOM simulations begin at 00:30 A.M. EST
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each day and finish at around 04:00 A.M. If new cell abundance
data have been uploaded by FWC, the model prepares an input
file for the tracking program. During this processing, the model
selects recent K. brevis cell abundance data and subdivides them
according to vertical position (upper or lower) in the water
column. Particles are released in the WFCOM model based on
the latitude, longitude, and depth of the cell abundance mea-
surements, and their simulated movement is tracked to calculate
the particle trajectories. Once finished, the surface and bottom
trajectories are plotted [Fig. 7(a) and (b), respectively] and then
automatically uploaded to the Web at http://ocgweb.marine.usf.
edu/hab_tracking/HAB_trajectories.html. When data from the
FWC are not available, fixed drifter stations at predetermined
locations are used to fill the spatiotemporal gaps in data col-
lection. The combination of real and artificial data provides
a powerful tool for managers to forecast HAB trajectories.
Therefore, our immediate next step in data integration will
need to incorporate such a tool with the Google-Earth-based
integration framework as described previously.

Furthermore, we recognize that monitoring of HABs requires
coordinated efforts from many stakeholders, and there are sev-
eral comprehensive Coastal Ocean Observing Systems (COOS)
within the GOM with specific tasks of data integration. Such
COOS include the Gulf of Mexico Coastal Ocean Observing
System (GCOQS), the Southeast Coastal Ocean Observing
Regional Association (SECOORA), and the Harmful Algal
BloomS Observing System (HABSOS). However, these are
designed to provide comprehensive access to a large suite of
oceanographic data (e.g., SST, sea surface salinity (SSS), and
sea surface height (SSH), among others) with an emphasis on
historic data. The completeness of these systems is often com-
promised by the speed of data access and display. In contrast,
the integrated products through Google Earth demonstrated
here are specifically developed for stakeholders in HAB mon-
itoring and response efforts. The simplicity of the data access
and display enables an especially effective communication tool,
which is therefore well suited for use by all stakeholders and in
particular by members of the public.

V. CONCLUSION

Effective monitoring of K. brevis blooms in the Gulf of
Mexico requires a coordinated and sustainable system for
observations and forecast. While research efforts have led to
progress in all aspects of bloom monitoring, including field
measurements, satellite remote sensing, and numerical mod-
eling, the work presented here represents one step further to
integrate the data products from these efforts to a user-friendly
format through a Web portal. In particular, the integrated
Google Earth product is vital to making HAB data easily
available and interpreted by a broad user base, as the data
integration was designed with stakeholder needs in mind. The
Web-based monitoring system has been serving the community
through sharing integrated data products in near real time and
is expected to improve in the near future as products are refined
(through algorithm development) and as new forecasting data
products are incorporated.
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