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Foreword

B ETWEEN 2010 AND 2012 a large number of authors from seven different countries and 

26 separate organisations developed a scientific case to establish the global importance 

of the Sargasso Sea. A summary of this international study was published in 2012 as the 

“Summary science and Supporting Evidence Case.” Nine reasons why the Sargasso Sea is 

important are identified in the summary. Compiling the science and evidence for this case 

was a significant undertaking and during that process a number of reports were specially 

commissioned by the Sargasso Sea Alliance to summarise our knowledge of various aspects 

of the Sargasso Sea.

This report is one of these commissioned reports. These are now being made available 

in the Sargasso Sea Alliance Science Series to provide further details of the research and 

evidence used in the compilation of the summary case. A full list of the reports in this series 

can be found in the inside back cover of this report. All of them can be downloaded from  

www.sargassoalliance.org.

Professor Howard Roe 
Science Advisory Committee Chair 
Sargasso Sea Alliance

Professor Dan Laffoley 
Science Coordinator 
Sargasso Sea Alliance
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Microbial Productivity of the Sargasso Sea  
and How it Compares to Elsewhere

D espite low nutrients and the designation as 
oligotrophic, the Sargasso Sea, per unit area, has a 

net annual primary production rate as high as some of the 
most productive regions in the global ocean.

The biological carbon pump, which is the 
photosynthetic formation of particulate and dissolved 
organic carbon in surface waters and its subsequent 
export to deep water, is characterized by a gross flux of 
about 15 Gt C yr-1 (Falkowski et al., 1998), with roughly 
2.5 Gt C yr-1 being exported from the upper 100 m and 
0.15 Gt C yr-1 reaching the abyssal sea floor. This export 
production and its attenuation mediated by marine biota 
might potentially play an increasingly important role in the 
net oceanic uptake of atmospheric CO2 (Falkowski, 1997; 
Karl et al., 1997; Sabine et al., 2004; Sarmiento et al., 1998; 
Winguth et al., 2005). In this respect, sub-tropical gyres, 
such as the Sargasso Sea, and the transition zones at their 
boundaries clearly play an important role in the ocean’s 
biological pump, and not only because they occupy 65% 
of the ocean’s surface area (Koblentz-Mishke et al., 1970). 
Emerson et al., (2001) found that annual export production 
on a per area basis is actually higher in the sub-tropics than 
in the sub-polar regions that are generally considered to 
be more important. This apparent contradiction could in 
part be due to additional nitrogen inputs via mesoscale 
and submesoscale processes (Oschlies, 2002; McGillicuddy 
et al., 2003) and nitrogen fixation (Capone et al., 2005; 
Michaels et al., 2001) which support enhanced export 
production but are poorly quantified. A corollary to this 
observation is that net phytoplankton primary production 
in the sub-tropics also may be higher than in the sub-polar 
region on an annual basis.

As an example of these ideas let’s compare one 
of the most productive ‘seas’ the Bering Sea, with the 
Sargasso Sea, which is commonly considered to be 
oligotrophic. Primary productivity per liter of Bering Sea 
water is often (>50% of ~500 observations) as high as 
0.2g C m-3 d-1 (Lomas et al., 2011), whereas in the Sargasso 
Sea primary productivity per liter seawater has only been 
>0.04g C m-2 d-1 12 times in over 2200 observations 
(Lomas et al., http://bats.bios.edu). Despite these 
disparities, the annual primary production per meter of 
sea surface area is very similar between the two seas at 
~150 gC m-2 y-1 (Rho and Whitledge 2007, Lomas et al., 
2011, Steinberg et al., 2001). The difference is even more 
dramatic when primary production is integrated over the 
surface area of the Bering and Sargasso Sea, which are 
of similar size, Bering Sea 2.6 million km2 and Sargasso 
Sea 3.6 million km2. Annual primary production by the 
Sargasso Sea is roughly 500 Tg C y-1, which is ca. 3-fold 
greater than the Bering Sea at 160 Tg C y-1. The primary 
difference between these two seas in terms of productivity 
is that in the Bering Sea (as in other polar seas, Carlson 
et al., 1998) a major fraction (>50%) of the net primary 
production is channeled to harvestable resources (e.g., 
crab, shellfish, pollpock) (Mathis et al., 2010, Moran et al., 
2011 and references therein) whereas in the Sargasso Sea 
a much smaller fraction (~10-20%) of primary production 
is channeled to harvestable resources, and most of the 
production is recycled by bacteria (Carlson and Ducklow 
1996, Carlson et al., 1996, Steinberg et al., 2001). These 
patterns have important implications for our present 
understanding of the oligotrophic gyres as well as future 
changes (see sections 1, 3 and 4 of SSA report No 6). 
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Role of the Sargasso Sea in Carbon  
Sequestration—Better than Carbon Neutral?

The Sargasso Sea plays an important role in the oceanic 
sequestration of carbon and on an annual basis is a 

net sink for atmospheric carbon dioxide.
On societally relevant timescales (e.g., decades to 

centuries), the global ocean sequesters large quantities 
of carbon dioxide (CO2) from the atmosphere. 
Photosynthetic fixation of CO2 into particulate matter 
coupled with the subsequent downward transfer via 
settling of these particles represents a quantitatively 
important export of carbon to the ocean interior. These 
processes are collectively termed the ocean biological 
carbon pump and it sequesters carbon into the deep 
ocean on the timescale (hundreds to thousands of years) 
of the global overturning circulation (e.g., Broecker and 
Peng, 1982; Gruber and Sarmiento, 2002). The reservoir 
of carbon in the global ocean is approximately 60-70 
times greater than that of the atmosphere. As such, even 
a small change in the ocean reservoir of carbon has a 
significant impact on the atmospheric concentration of 
CO2 and the response of the climate system to the release 
of anthropogenic (i.e., human produced) CO2. 

	 At present, the global ocean sequesters about 
25% of anthropogenic CO2 in the atmosphere, with 
the total amount of anthropogenic carbon sequestered 
in the ocean estimated at ~120-140 Pg (Pg = 1015 g) 
of carbon (e.g., Sabine et al., 2004; Khatiwala et al., 
2009). The net (fixation minus re-mineralization) 
global ocean uptake of CO2 is estimated at ~1.4 to 
2.5 Pg C per year (e.g., Takahashi et al., 2002, 2009; 
Manning and Keeling, 2006), with the ocean uptake 
increasing with time (e.g., Le Quéré et al., 2009) as 
the amount of anthropogenic CO2 released to the 
atmosphere has increased (Friedlingstein et al., 2010). 
Thus, the sequestration of CO2 into the global ocean 
is one of the primary mechanisms that controls the 
concentrations of CO2 in the lower atmosphere and 

the impact of human produced CO2 on the climate 
system (IPCC, 1990, 2001, 2007). 

Understanding the time-varying magnitude and 
dynamics controlling the sequestration of carbon requires 
a detailed study of the biological, geological and chemical 
processes that control the transfer of carbon across the 
air-sea interface and into the deep ocean. Long-term 
observations at the BATS site indicate two important 
observations. First that on an annual time-scale the 
northwestern Sargasso Sea is a net sink for CO2. During the 
summer, CO2 outgases from the surface ocean, but this is 
offset by the strong net sink of CO2 in the winter (Bates et 
al., 2002, Bates 2007) that is actually increasing along with 
the increases in primary production and phytoplankton 
biomass (Lomas et al., 2010). Second, total dissolved 
inorganic carbon (DIC) in surface and deeper water layers 
have increased at divergent rates since 1988 (Bates et al., 
2002; Gruber et al., 2002). In deeper subtropical mode 
waters (STMW), the mean rate of change of DIC (1988-
2001) was twice as high as in surface waters (Bates et al., 
2002). The STMW of the North Atlantic Ocean is formed 
each winter by cooling and convective mixing at the 
northern edges of the subtropical gyre south of the Gulf 
Stream (Klein and Hogg, 1996; Hazeleger and Drijfhout, 
1998). The shallow depths of the subtropical gyre (~250-
400m deep) are ventilated during STMW formation and 
the STMW layer is found throughout the subtropical gyre 
(Klein and Hogg, 1996; Jenkins, 1998; Hanawa and Talley, 
2001; Alfutis and Cornillon, 2001). Since 1988, ~0.6-
2.8 Pg (1015 g) of CO2 has accumulated within the gyre 
STMW, ~0.04 – 0.26 PgC per year, representing a long-
term oceanic sink of CO2 (>10 years) in this region. The 
Sargasso Sea biological carbon pump sequesters ~0.06 Pg 
C yr-1. Combined these two terms account for the net 
sink of CO2 in the Sargasso Sea and they represent ~7% 
of the global net biological carbon pump.
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Since the initial meetings the partnership around the Sargasso Sea Alliance has expanded.  

Led by the Government of Bermuda, the Alliance now includes the following organisations.   

PARTNER	 TYPE OF ORGANISATION

Department of Environmental Protection	 Government of Bermuda

Department of Conservation Services	 Government of Bermuda

Mission Blue / Sylvia Earle Alliance	 Non-Governmental Organisation

International Union for the Conservation  
of Nature (IUCN) and its World  
Commission on Protected Areas 	 Multi-lateral Conservation Organisation

Marine Conservation Institute 	 Non-Governmental Organisation

Woods Hole Oceanographic Institution	 Academic

Bermuda Institute for Ocean Sciences	 Academic

Bermuda Underwater Exploration Institute	 Non-Governmental Organisation

World Wildlife Fund International	 Non-Governmental Organisation

Atlantic Conservation Partnership	 Non-Governmental Organisation	


