Mapping the Sargasso Sea

Sargasso Sea Commission Meeting 31 March 2016

Jason Roberts Pat Halpin Jesse Cleary

The Sargasso Sea

- What and where is it? (2011-2012)
 - Approach 1: map the Sargassum
 - Approach 2: map circulation patterns

MCI Jeff Ardron Russ Moffitt Sharon Gulick

MGEL

Pat Halpin Jason Roberts Ben Donnelly Jesse Cleary

• New data developments (2012-2015)

Mapping the Sargassum

Multiple approaches:

- Historic studies
- In situ observations
- Remote sensing
- Hydrodynamic simulation

National Geographic 1976

How do they compare?

We started with historic maps and in situ data...

Newfoundland

Gulf of

St. Lawrence

NORTH ATLANTIC OCEAN

Historic mapping: 1870 - 1912

In situ observations: 1923-1981

In situ observations: SEA surveys 1977 - 2010

Remote Sensing: Gower et al. with MERIS

Sydney, BC (2011)

Gower et al. Approach

European Space Agency (ESA) Medium Resolution Imaging Spectrometer (**MERIS**)

MERIS is a sensitive detector "shifted red-edge" characteristic of marine and floating vegetation (Gower et al., 2006, 2008, 2011).

Maximum Chlorophyll Index: MCI index measures the local peak in waterleaving radiance near 705 nm, measured for each pixel of the satellite image data to show excess radiance at 709 nm, above a baseline defined by linear interpolation between the neighboring spectral bands at 681 and 754nm

$$\boldsymbol{L}_{709} - \boldsymbol{L}_{681} - (709 - 681)(\boldsymbol{L}_{754} - \boldsymbol{L}_{681})/(754 - 681)$$

Gower et al. Approach

The monthly composites of MCI signal at 5 km spatial resolution are analyzed by computing the frequency distribution (histogram) of MCI values in each one-degree square.

MERIS Count: the number of MCI values above threshold, multiplied by the amount by which MCI exceeds its background value (in mW m⁻² nm⁻¹ sr⁻¹)

MERIS count =
$$\sum_{m=b+t}^{m=\infty} (m-b)n(m)$$

Detectibility: To be detected with 1200mresolution data (aggregated to 5000m), *Sargassum therefore has to* be dense enough, and to cover a large enough area, to affect the average colour (visible surface spectral reflectance) of an area of ocean surface 1200m across.

Aggregating Gower's Results

May – June: GoMEX bloom

November - December: transition

July - October: Gulf Stream transport

January – April: aggregation

Smoothing and contouring

May – June: GoMEX bloom

November - December: transition

July - October: Gulf Stream transport

January – April: aggregation

Hydrodynamic dispersal simulations

Sargassum is not plastic; it does not live forever...

Mortality Model 0: In this model, sargassum grows in February and lives for one year. After the end of the 12th month (January of the following year), it is all killed in a single event.

Mortality Model 1: Sargassum lives for 1 year with no mortality. Then, over the next 12 months, 1/12 dies each month, such that after 24 months, it is all dead.

Mortality Model 2: Feb-Nov: no mortality, Dec-Feb: 1/6 of stock killed off per month, for each of these three months, leaving 1/2 the stock alive, Mar-Nov: no mortality, Dec-Feb: 1/6 stock killed off per month, killing off the remaining 1/2 stock

Mortality Model 3: Feb-Nov: no mortality, Dec-Feb: 1/9 of stock killed off per month, for each of these three months, leaving 2/3 the stock alive, Mar-Nov: no mortality, Dec-Feb: 1/9 of stock killed off per month, for each of these three months, leaving 1/3 the stock alive, Mar-Nov: no mortality, Dec-Feb: 1/9 of stock killed off per month, for each of these three months, leaving none alive

Sargassum may also interact with surface winds...

1. Advect Sargassum via Stokes drift.

2. Permanently sink sargassum as wind speed increases, via Langmuir circulation

Climatological Mean Wind Speed (m/s) QuikSCAT, 1999-2009

Successive refinements showed some promise...

Simulated Mean Sargassum Density vs. SEA Fall Sargassum Tows Mortality Model 3 - November (All Years Combined)

Averaged from five 3-year hydrodynamic dispersal simulations: 2004-2006, 2005-2007, 2006-2008, 2007-2009, 2008-2010

thereafter, 64512 units in total are in circulation.

Sargassum is prevented from entering these areas.

Simulated Mean Sargassum Density vs. SEA Fall Sargassum Tows Mortality Model 3 - May (All Years Combined)

Averaged from five 3-year hydrodynamic dispersal simulations: 2004-2006, 2005-2007, 2006-2008, 2007-2009, 2008-2010

thereafter, 64512 units in total are in circulation.

Sargassum is prevented from entering these areas.

SEA spring observations & MERIS spring density contour

SEA spring observations & MERIS spring density contour

Flowing west

Further elaboration

Cyclonic eddy frequency

Further elaboration

Further elaboration

The Sargasso Sea was formally submitted as a candidate Ecologically or Biologically Significant Area (EBSA) to the UN Convention on Biological Diversity in February 2012

New data developments

- Coral larval dispersal and connectivity models
- Cetacean density models
- Data product aggregation and synthesis in support of efforts to delineate ecologically and biologically significant areas

Dispersal driven by RTOFS model

SCIENTIFIC REPORTS

OPEN Habitat-based cetacean density models for the U.S. Atlantic and **Gulf of Mexico**

Received: 18 November 2015 Accepted: 17 February 2016 Published: 03 March 2016

80°\A/

Jason J. Roberts¹, Benjamin D. Best^{1,2}, Laura Mannocci¹, Ei Fujioka¹, Patrick N. Halpin¹, Debra L. Palka³, Lance P. Garrison⁴, Keith D. Mullin⁵, Timothy V. N. Cole³, Christin B. Khan³, William A. McLellan⁶, D. Ann Pabst⁶ & Gwen G. Lockhart⁷

http://www.nature.com/articles/srep22615

75°W

55°W

80°W

100°W

90°W

85°W

Humpback whales

71°W 70°W 69°W 68°W 67°W 66°W

71°W 70°W 69°W 68°W 67°W 66°W

Cetacean densities beyond the U.S. EEZ: The U.S. Navy Atlantic Fleet Testing & Training (AFTT) Area

Results: Kogia spp. (dwarf and pygmy sperm whales)

Laura Mannocci et al. (in review)

Results: Striped dolphin

Laura Mannocci et al. (in review)

Data report: Towards development of a Strategic Environmental Management Plan for deep seabed mineral exploitation in the Atlantic basin

Pre-Workshop Data Report

1-3 June 2015, Horta, Azores, Portugal

Telmo Morato, Jesse Cleary, Gerald H. Taranto, Frederic Vandeperre, Christopher K. Pham, Daniel C. Dunn, Ana Colaço, Patrick N. Halpin Last update: 12th June 2015; 16:30 Azores time

Data report to inform the workshop Towards development of a strategic Environmental Management Plan for deep seabed mineral exploitation in the Atlantic basin, prepared by IMAR Instituto do Mar and the Marine Geospatial Ecology Lab, Duke University.

The data collection team and the workshop organizers would like to thank the generous support from Directorate-General for Maritime Affairs and Fisheries European Commission, The Government of the Azores, The Deep Sea Conservation Coalition, the J.M. Kaplan Fund, the Oceans 5 funders' collaborative and The Pew Charitable Trusts.

Published by:	IMAR Instituto do Mar and the Marine Geospatial Ecology Lab, Duke University
Copyright and Disclaimer:	© IMAR Instituto do Mar and Marine Geospatial Ecology Lab, Duke University. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of the IMAR Instituto do Mar or Marine Geospatial Ecology Lab / Duke University.
Important Notice:	Information contained in this publication comprises general statements based on scientific research. IMAR Instituto do Mar and the Marine Geospatial Ecology Lab (MGEL) advises the reader to note that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, IMAR and MGEL (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Additionally, some data sets used herein require permission from the data providers for use.
Citation:	Morato, T., J. Cleary, G.H. Taranto, F. Vandeperre, C.K. Pham, D.C. Dunn, A. Colaço, P.N. Halpin (2015) Data report: Towards development of a strategic Environmental Management Plan for deep seabed mineral exploitation in the Atlantic basin. IMAR & MGEL, Horta, Portugal. 112 pp.
Cover image:	Jesse Cleary, MGEL, Duke University

Many, many data products...

Figure 1. Workshop areas of interest	3
Figure 2. OBIS records in the Area of Interest	3
Figure 3. Publications referring to MAR or RGR	4
Figure 4. Publications referring to MAR or RGR divided by different categories	5
Figure 5. Bathymetry of the Atlantic Ocean	6
Figure 6. Seafloor slope	7
Figure 7. Slope of the slope	8
Figure 8. Multibeam bathymetric survey tracks.	9
Figure 9. SST climatology	10
Figure 10. Surface temperature	
Figure 11. 500 m temperature	13
Figure 12. Bottom temperature	14
Figure 13. Mixed layer depth	15
Figure 14. Bottom oxygen climatology	16
Figure 15. Forecast of annual average POC flux to the seafloor	
Figure 16. 500 m current velocity	
Figure 17. Bottom temperature	
Figure 18. Spring oceanic front frequency	
Figure 19. Chlorophyll A climatology	
Figure 20. Vertically Generalized Production Model (VGPM)	25
Figure 21. Eddy density climatology	
Figure 22. Drifter-derived climatology of near-surface currents from drifting buoy data	
Figure 23. Sea floor geomorphic features	
Figure 24. Global seascapes (seabed categories)	
Figure 25. Atlantic fracture zones	
Figure 26. Global seamount classification	
Figure 27. Sediment thickness	
Figure 28. All OBIS records for the area of interest.	40
Figure 29. All OBIS records below 200 m for the area of interest	40
Figure 30. All OBIS records of the lower half of the water column for the area of interest	40
Figure 31. All OBIS records of the upper half of the water column for the area of interest	40
Figure 32. Hurlbert's Index (ES[50]) for all taxa	
Figure 33. Hurlbert's Index (ES[50]) for all taxa of the lower half of the water column	
Figure 34. OBIS records of all VME indicator taxa considered	
Figure 35. OBIS records of Octocorals	45
Figure 36. OBIS records of Scleractinia.	45
Figure 37. OBIS records of sponges	45
Figure 38. Total number of publications	46
Figure 39. Total number of publications – benthic	
Figure 40. Total number of publications - VME indicator taxa	
Figure 41. Total number of publications - Hydrothermal vents and cold seeps type	
Figure 42. Total number of publications - pelagic	
Figure 43. Deep-Sea Octocoral Habitat Suitability – Consensus.	48
Figure 44. Deep-Sea Octocoral Habitat Suitability – Alcyoniina	49
Figure 45. Deep-Sea Octocoral Habitat Suitability – Holaxonia	

Table of Figures

500m Current Velocity (HYCOM, January 2014) Velocity (m/s) H: 0.9 L: 0.0004