Site-specific ecological assessments from *larger-scale* datasets, or...

"Better Living Through Physics"

Sargasso Sea Workshop, Mar 21, 2016

Dr. Lew Gramer, lew.gramer@noaa.gov, CIMAS (UM) Dr. Jim Hendee, jim.hendee@noaa.gov, NOAA-AOML

ROSENSTIEL SCHOOL OF MARINE & ATMOSPHERIC SCIENCE

Introduction

The Coral Health and Monitoring Program (CHAMP) at NOAA AOML in Miami

• A network of reef monitoring stations

Integrated with satellite and model products

Daily ecosystem impact alerts

CHAMP Network

CHAMP Network

Reef and Fisheries Stressors

- CHAMP assesses stress on individual reefs and key coastal fisheries sites...
- We improve accuracy with ocean physics
- We automate alerts with rule-based inference
- We alert managers of potential stress daily

Reef-scale Sea Temperature

 Reef thermal environments are monitored from satellite data and coupled numerical models at scales of kilometers.

Circulation and mixing alter thermal balances.

• Physical ocean processes impact the thermal environment of *individual coral communities*.

Reef-scale Sea Temperature

Reef the from second model

• Circula

honitored Sumerical

nal balances.

 Physical ocean processes impact the thermal environment of *individual coral communities*.

Reef-scale Sea Temperature

Cross-shore temperature profile – Gulf of Mexico HYCOM (May 2008)

Cross-shore temperature profile – Florida Keys HYCOM (May 2008)

High resolution can still fail...

High resolution can still fail...

The Gory Details

$$\partial_t T = -[\vec{u}_{km} \bullet \nabla_h + K_{H\theta}^{km} \nabla_h^2 + \vec{u}_{qe} \bullet \nabla_h + K_{H\theta}^{SGS} \nabla_h^2]T_{km} - \vec{u}_{hc} \bullet \nabla_h T_{hc}(Q_0, h, \beta) + \frac{Q_0}{\rho C_p h}$$

Advection-Diffusion of Heat: $u \cdot \nabla T + K \nabla^2 T$

Source term:
$$Q_0 = \gamma Q_{shortwave} + Q_{longwave} + Q_{sensible} + Q_{latent} + Q_{rain} + Q_{benthic}$$

Absorption factor $\gamma = 1 - A_b \cdot \tau_{PAR} \cdot (1 - \tau_{PAR})$ depends on bottom reflectivity A_b , and attenuation rate for visible and NUV light with depth, τ_{PAR} . Benthic flux depends on τ_{PAR} , substrate composition, and $Q_{shortwave}$.

Horizontal Convection:

Beyond weather & kmscale oceanography, thermally-driven mixing also plays a major role:

• enhanced *lateral heat diffusion* (Hearn 2011)

horizontal convection (Monismith et al. 2006)

Absorbed sunlight

Barnes *et al.* (2013), their Figures 8b and 9

Shallow sites: insolation is absorbed at different rates during a year. Amplitude and phase of annual cycle vary along the length of the FRT, and across multiple years.

Horizontal Convection – thermal siphon

 Air-sea flux and km-scale heat advection alone do not model variability well: is there also a smaller-scale oceanographic process at work?

Horizontal convection reproduces seasonal cycles on the reef crest

We train our heat budget (green) at reef sites with long records of *in situ* sea temperature (blue): Global reanalysis (ECMWF ERA-Interim, Dee et al. 2011) provides all meteorology and ocean wave data.

Sloping seafloor is widespread

Sites with (very, somewhat, slight) reduced exposure to thermal stress (278 m)

Summary

- To model the physical coastal environment, we must account for local *seafloor topography*.
- By parameterizing *reef-scale processes*, we can assess thermal and light variability more realistically from lower-resolution, surface-based data.
- COVERAGE can be a valuable source of larger-scale data for CHAMP in monitoring the Sargasso Sea...
- And CHAMP may be a useful tool for COVERAGE!

THANK YOU

Photo © J. E. N. Veron, <u>Corals of the World</u>, 2000 Large Porites astreoides ("mustard hill coral")

the at at

http://www.coral.noaa.gov